Deep learning for object detection in video
نویسندگان
چکیده
منابع مشابه
Deep learning for class-generic object detection
We investigate the use of deep neural networks for the novel task of class-generic object detection. We show that neural networks originally designed for image recognition can be trained to detect objects within images, regardless of their class, including objects for which no bounding box labels have been provided. In addition, we show that bounding box labels yield a 1% performance increase o...
متن کاملDeep Learning for Detection of Object-Based Forgery in Advanced Video
Passive video forensics has drawn much attention in recent years. However, research on detection of object-based forgery, especially for forged video encoded with advanced codec frameworks, is still a great challenge. In this paper, we propose a deep learning-based approach to detect object-based forgery in the advanced video. The presented deep learning approach utilizes a convolutional neural...
متن کاملDeep Spatial-Temporal Joint Feature Representation for Video Object Detection
With the development of deep neural networks, many object detection frameworks have shown great success in the fields of smart surveillance, self-driving cars, and facial recognition. However, the data sources are usually videos, and the object detection frameworks are mostly established on still images and only use the spatial information, which means that the feature consistency cannot be ens...
متن کاملHierarchical Object Detection with Deep Reinforcement Learning
We present a method for performing hierarchical object detection in images guided by a deep reinforcement learning agent. The key idea is to focus on those parts of the image that contain richer information and zoom on them. We train an intelligent agent that, given an image window, is capable of deciding where to focus the attention among five different predefined region candidates (smaller wi...
متن کاملConcept drift detection in business process logs using deep learning
Process mining provides a bridge between process modeling and analysis on the one hand and data mining on the other hand. Process mining aims at discovering, monitoring, and improving real processes by extracting knowledge from event logs. However, as most business processes change over time (e.g. the effects of new legislation, seasonal effects and etc.), traditional process mining techniques ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Physics: Conference Series
سال: 2019
ISSN: 1742-6588,1742-6596
DOI: 10.1088/1742-6596/1176/4/042080